Part Number Construction
 
Newsletter Sign Up
Name
Email
Submit
Questions?  Call 800-243-2715
      
       Download Catalog
Related Companies & Brands
 
 
CHARACTERISTICS TECHNICAL DIAGRAMS PERFORMANCE CURVES 3D MODEL
   

G4 19000 SERIES 20mm (.79") LINEAR ACTUATOR

Robust and Powerful...These 2 simple words describe the Haydon™ 19000 Series can-stack stepper motor linear actuator from Haydon Kerk Motion Solutions.  Compared with current offerings in the marketplace, the G4 generates the highest force in the industry in a 20mm package size.  Designed for tough applications, it easily outperforms the competition in performance and durability.

Standard motors are Class B rated for maximum temperature of 130°C.

Standard Lubrication Options - Grease, TFE Coating

Part Number Selection Guide

 

Captive Non-Captive External
Linear Actuator - 3/4" High Output Captive
Linear Actuator - 3/4" High Output Non-Captive
Linear Actuator - 3/4" High Output External
» Technical Drawing
Download 2D/3D Model
» Technical Drawing
Download 2D/3D Model

SALIENT CHARACTERISTICS - G4 19000 SERIES STEPPER MOTOR LINEAR ACTUATOR

 

Linear Actuator 20mm (0.79") 19000 SERIES 15 degree step angle
Part Number Captive 1954(X)-V
Non-Captive 1984(X)-V
External E1954(X)-V
Wiring Bipolar
Step Angle 15°
Operating Voltage 5 VDC 12 VDC
Current / Phase 338 mA 140 mA
Resistance / Phase 14.8 Ω 85.5 Ω
Inductance / Phase 6.84 mH 37.8 mH
Power Consumption 3.38W
Rotor Inertia .548 gcm2 
Temperature rise 135° F (75°C) Rise 
Weight 1.24 oz. (35g)
Insullation Resistance 20 MΩ

 

SALIENT CHARACTERISTICS - G4 19000 SERIES STEPPER MOTOR LINEAR ACTUATOR: HIGH RESOLUTION

 

Linear Actuator 20mm (0.79") 19000 SERIES 7.5 degree step angle
Part Number Captive 1944(X)-V
Non-Captive 1934(X)-V
External E1944(X)-V
Wiring Bipolar
Step Angle 7.5°
Operating Voltage 5 VDC 12 VDC
Current / Phase 350 mA 160 mA
Resistance / Phase 14.0 Ω 74.5 Ω
Inductance / Phase 6.24 mH 31.2 mH
Power Consumption 3.38 W
Rotor Inertia 1.052 gcm2 
Temperature rise 135° F (75°C) Rise
Weight 1.24 oz (35g)
Insullation Resistance 20 MΩ

 

LINEAR TRAVEL STEP - G4 19000 SERIES LINEAR ACTUATOR

 

Step Angle Inches/Step      mm/Step Order Code ID
15°      0.001         0.025                           1
15°      0.002         0.051         2
15°      0.004         0.102         4
 7.5°                        0.001         0.025        1
  7.5°                        0.002         0.051        2
7.5°                      0.0005         0.013         3

 

DIMENSIONAL DRAWING - G4 19000 SERIES - STEPPER MOTOR LINEAR ACTUATOR CAPTIVE

DIMENSIONAL DRAWING - G4 19000 SERIES - STEPPER MOTOR LINEAR ACTUATOR NON CAPTIVE

STANDARD SCREW LENGTH AVAILABLE - Up To 6.3" (160mm)

DIMENSIONAL DRAWING - G4 19000 SERIES - STEPPER MOTOR LINEAR ACTUATOR EXTERNAL

Stepper Motor Linear Actuator External

STANDARD SCREW LENGTH AVAILABLE - Up To 6.3" (160mm)

Connector Part Numbers 
  Part Number     Dim "A"
56-1318-4 610+/-10mm
56-1318-3 450+/-10mm
56-1318-2 300+/-10mm
56-1318-1 150+/-10mm

 

PERFORMANCE CURVES - STEPPER MOTOR LINEAR ACTUATOR G4 19000 SERIES - THRUST vs. FULL STEP/SECOND
 

BIPOLAR L/R DRIVE 100% DUTY CYCLE

Linear Actuator Performance Curve

BIPOLAR L/R DRIVE 25% DUTY CYCLE

25% Duty cycle is obtained by a special winding or by running a standard motor at double the rated voltage.

Linear Actuator Performance Curve

NOTE: Ramping can increase the performance of a motor either by increasing the top speed or getting a heavier load accelerated up to speed faster. Also, deceleration can be used to stop the motor without overshoot.

 

PERFORMANCE CURVES - STEPPER MOTOR LINEAR ACTUATOR G4 19000 SERIES - THRUST vs. FULL STEP/SECOND
 

BIPOLAR CHOPPER DRIVE 100% DUTY CYCLE

Stepper Motor Linear Actuator

BIPOLAR CHOPPER DRIVE 25% DUTY CYCLE

25% Duty cycle is obtained by a special winding or by running a standard motor at double the rated current.

Stepper Motor Linear Actuator

NOTE: All chopper drive curves were created with a 5 Volt motor and a 40 Volt power supply.

Ramping can increase the performance of a motor either by increasing the top speed or getting a heavier load accelerated up to speed faster. Also, deceleration can be used to stop the motor without overshoot.